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ABSTRACT
The consistent directions of the least squares estimators in a linear
model are defined to be the linear combinations of parameter estimates that
are asymptotically consistent. When the design variable is univariate and the
regression function is smooth, consistent directions are characterized in
previous papers (Wu, 1980; Wu and Wang, 1982) in terms of the convergence
rates of the design sequence to its limit points. Extensions of these results

to multivariate design variables are considered in the present paper.
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SIGNIFICANCE AND EXPLANATION

the parameter.

multivariate input variables.

A basic requirement of the least squares estimator in a linear model is
that it should be close to the true parameter for a large sample size. If
this is not the case, one would like to know what linear combinations of the
components of the least squares estimator are close to their counterparts in
In this paper we study the characterization of these

combinations for linear models with smooth regression functions and
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CONSISTENT DIRECTIONS OF THE LEAST SQUARES ESTIMATORS IN LINEAR MODELS

Song-Gui Wang" and C. F. Jeff Wu

1. Introduction
Consider a linear model
L =0'f(x) +¢ (1.1)

vwhere §' = (0’,...,09), £'(x) = (f,(g),...,fp(g)), £.(x), 3 = 1,...,p, are univariate

3

functions of the input vector x = (x,,...,xﬁ)', the random error € has mean 2zero,
variance 02 and errors corresponding to different observations are uncorrelated or

independent. If ¥y is observed at X

full rank, the least squares estimator (LSE) of 8 is

a ~1
Q= (xpx ) Xy , _ (1.2)

1= %.e0yn, and X3 = [£(X,)ss0-,£0x))] 18 Of

where y' = (yq,ese,y,)e It is known that é + § a.s. (or in prob.) iff (x;xn)" +0
when {21): are i.i.d. (or uncorrelated). The strong consistency part was proved in Lai
et al. (1979). For recent results on the congistency of LSE, see the references of Wu
{1980) and Wu and Wang (1982). In case (x;xn)“ + 0 does not hold, é is not consistent
for estimating the vector g. It was observed in Wu (1980) that, in this case, the best
linear unbiased estimator g'é of a linear combination b'@ = g biel may still be

consistent for some vectors Q. Such a vector b is called a consistent direction of the

LSE O. The space of consistent directions is defined as

)')-12 +0 as n +®} .

-

n
-1
s(g) = {p s bxx) b= b'(§ £, )£(
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A general characterization of §(f) as given in Wu (1980). when the input x is
scalar (q = 1 in (1.1)) and fj is any smooth function in x, a msore refined
characterization was given in Wu and Wang (1982) in terms of the convergence rates of the
design sequence to its limit points. More specifically, if a is a limit point, i.e.,
thﬁ exists a subsequence x“j. +a as i +*, and :f (x“1 -a)¥ . e, the th
derivative g(r’(n) is a consistent direction under some smoothness assumption on f£(x)
near a. Extension of this result to multivariate input x 1is nontrivial bccauni
different components of the vectors 5, X may converge to their limit points at different
rates. A simple special case (constant convergence rate for all components) was considered
in Wu and Wang (1982). The purpose of this paper is to present more general results for
the multivariate input variable x.

The mathematical results developed in the three papers may find applications beyond
the consistency of LSE. Por the convenience of the potential users of our results, we will
give this problem an equivalent formulation that is void of statistical jargons.

A. Given a sequence of p X 1 vectors {!1):, characterize the subspace
s={p: g'(,{: !i!i)qg +0 as n + = in terms of the "limiting® behavior of {!1}:.

Bs If vy, 1is a smooth function of a q x 1 vector Yy i.e. !1-"(‘!-1) and £

1
is smooth, characterize the subspace 8 defined in A in terms of the “"limiting” behavior
of the input sequence {!1}:. Typically q is much smaller than p.

Problem A was solved in Wu (1980). Problem B was solved for some £ functions and

input variables w in Wu (1980), Wu and Wang (1982) and the present paper.
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2. Main results

Before stating the main results, we define some notations. We assume that the input

sequence {51}: is bounded, where 5; = ("i‘l"""‘lq)‘ The less interesting case that

(x,}] 1is unbounded can be treated as in Wu (1980). If there exists an infinite

subsequence ng; such that x, +8 as i +® wve say that g is a limit point of

1
(51}:. Define N(a,8), the S-neighborhood of a‘' = (a,,...,aq), to be
{x* = (xqreeesxg) 2 Ix; = a5l < 6, & = 1,...,q}, and cr(Q,G) to be the set of functions
with rth continuous partial derivatives in N(a,8). 1In particular, co(Q,G) ia the set

of continuous functions in N(a,8). Define £(x) € c'(e_,s) ife £.(x) € c“la,8) for

1€ 3 < p. The little o-notation u, = of{v,} means lu |/|lv | +0 as n + =
)
Define (x - a)V = f (x; = ay) 3~
AR
k Kk 13
[lx = 2VI7LMA) = (10x - V"L (@)ovees iy = AIVIVL (aD)
) akg(g)
= (xg = ag ) ooo {xy = ay ) 00750 ¢ (2.1)
1 34 I I’ x, eee 3x
RN i Ik
. k
ity - aVi'g(a)
i
8;(x,t) = T (2.2)
kl(xn e lt)
i
and
g ’ta) "
8y (r,t,A) = w' (x  ~a  )eeefx . -a, ) s—r3— [lxt(x _-a )7}, (2.3)
e ced M3 N ndp 3y 3xy cvedxy nt ot
~r 1 r
where Ek - (j’l""jk)'
Ty = (g = Gqeeeesd ) 1 163 €q 1 <m<k), (2.4)

and A is a subset of Tpe k= 1,000,10

Suppose {J")::_1 is a partition of J = {1,2,...,q}. Define a partition of T  as

follows:

3=

x

LT




Tey = {sr = (Jqeeeerd) €Tps 3 € J4UJ, for all m and j, eJ,

for at least one m} , (2.5)
Tea= {8, = Gygeeeend) €1 3, €3, for all am}, (2.6)
Te3z * {,t,r'- (j1,...,jr) €T.: j, €J; for at least one m} . (2.7)

We are now in the position to state the main theorems.
Theorem 1. If £(x) € c°(g,c) for some § > 0, then f(a) is a consistent direction for

any limit point a of the design sequence (51 :_1.

This follows immediately from Theorem 2 of Wu (1980).
Theorem 2. Suppose

(1) + as i+ », vhere x' = ( coe )
Enj, ) et 2 L) 51'1 xni."x“iz' "“iq .

(i1) f(x) ec o (a,6) for some & > 0, £y integer,

(111) 1let {.‘!‘}:__1 be a partition of the set J = {1,2,...,q)} satisfying the following

conditions for a fixed g e J,

0 je\11
xnij - aj
lim mda jey (2.8)
x ~-a 3 2
e ndy Y
- 3“’3
where aj # 0, for all j e Py
-
2r
( ~a;) 0w 2.9
121 "nyde T Mo ! (2.9
to+‘| Iy
(x"j.j - aj) O((x“ijo - njo) ), J € Jg » (2.10)
Por r = 1,2,.00,!0
ri-l (r)
1im | 8;(k,3g) + 8,(r,35,Tp3) + 'L " (a) >0 (2.11)
oo xep 1000 i'%edorTr3 Y,

for all w with g'g;:)(e) # 0 where S, (k,3,), 8,(r,3;,T,4) and T,3 are defined in

(2.2), (2.3) and (2.7). Then the vectors




«

oy

r
(r)(.) = 2 a see ——aifg— rs= 1,2
a . j % eee ox. ' ¢ ,-oo,to

Y 3
0 SreTrz 1 r

ey
S S

are consistent directions.

Proof: According to Theorem 1 of Wu (1980), we only need to prove that for any fixed

1<« r,
T ' 2 15, (T)
I v £(x, 11" == for any w with w Yy (a) # 0.
i=1 i 0
i
{ Consider a Taylor series expansion of f(x ) at &
! i
: f x £+
£(x ) = {(x =8Vl g(a)/kl + [(x - a)V1" "£(£.)/(r + 1)1
om0 M y Y

(1) (1) (1) (1) 1)
vhers § = 5, ¢ 3 (5n1 -2, 0% = atagiey ..., 00 M), 0 < e; <1 for 1<j<gq
and all i. Thus,

. , - . vl - an'ga

I tettx NT= § (x RN = 1

=1 1 =1 Mdo o fkwo xi(x ., - a
n;3g

i

!l[(’éni - e)v]r‘*"

saq’

+
(r+ 1)1(x -a )'J
LTSI P

2r; % 2
i 1§1 (xnijo ) ajo) [kZO 8y(kedg) + Rylx + 1,3,)]

= J (x

2r.2
- a ) 8 .
&£, jo ir * (2.12)

ny3p

where
r+1
lteg, - a1 g

Ri(r + 1,j) = .
{r + 1)2(xn .- dj
i-0 0

-5-




By assumption (ii), there exists an M > 0, such that

X
‘ <M, t = 1,2,-0-,9 .

Sup
xea.8) Oy, Ieq

PFrom Cauchy-Schwarz inequality, (2.8) and (2.10),

Iroo as | v e,

Ryz + 1.3g) ¢ (constant)l (g, = g)vl"‘gginnxnijo -8y

We decompose s‘(r,jo) into two parts
83(rsdg) = 83(FedgeTyy Y Tra) + 81(redgeTyy) -

rrom (2.8), it is easy to see that

e vr e [ Y] =)y,

£43n, v e @ F——————— = y'y .

1{£e39:Trq Y Tpp . o M 3, =, W, Yo ¥
Srr2 1 r

By assumption (2.11), there exist N, and 7 > 0 such that for i > N, sf, > . Since
-
(2.9) implies 12' (x"ﬂo - .-.jo)zr = ® for any r € rx,, from (2.12), the required result
is proved. a
The linear space spanned by g;:’(g). is independent of the choice of Jg €9, In
fact, for any j, € T 3¢ or let

”e(a)
(!) L ] - " -
v {a) = 2 a ove o ———————
sj ~ j j x ees 3Ix
1 sre!rz ! ¥ j‘l 3:
where
»

cj 1’1: (x“l.j - .3,/(x“131 - .31)' jea,.

It is easy to see that

v(r)(%) - (u;

Y ,rv(r)(.) for 1€¢r <r,.
1

0 ~j° ~
Thus the two vectors span the same linear subspace.
When Iy = 33 = ¢, the empty set, all the components of gn converge at the same

N i
rate and Theorem 2 takes a simpler form.

A
e e atato s .-,J

T e RO Y RS R PO At I.-l X - . e e ok




Corollary 1. Suppose (i) and (ii) of Theorem 2 hold and for some 1 < jo <q

n,3 3
lim — =9 for 1¢3<q (2.13)
=3y 9
where “j # 0,9,
E ( ) o (2.14)
- a = o .
Ly Tride T Mo
Then
[gV]rg(g) are consistent directions for r = 1,2,...,x,
where

" g(a)

r
g~ (Ggeee,@ ) and (aV1"gla) = ] @ oo & FxveeEx

erj1 r j 3

st r 1 r

Proof: It is sufficient to prove that (2.11) holds for the case under consideration. 1In

fact, since T 5 = 4, 8;(r,39,T3) = 0, and

o o, 7 %) 7 Pag 7)) e
8, (ko3q) = ) 1 1 ik x
1*7J0 (x a )r-k (xn 3 " aj ) eee (x 5. aj ) 3x, oo axj
nij b] ~k 'k i’0 0 i‘0 0 1 k
0 0
"
~ -
= . " oy Si(k,jo) for k = 0,1,00e,7 &
" Y
* k
si(kljo) b (ev] g(ﬁ)p kK= 12/0ee,r ,

300,39 = £la) -
Let k, be the first k with w’ (a1%€(a) # 0. From w'laV)Tf(a) # 0, we have
kg ¢ r. Thus, the sfr in (2.12) are dominated by the leading term S,;(kg,3g), which is
bounded away from zero as i + ®, Therefore (2.11) is satisfied. D

Wu and Wang (1982) gave a more direct proof of Corollary 1.

Lt_.‘ 1




If Jy = ¢ and g, = {jo} in Theorem 2, we obtain immediately the following
Corollary.
Corollary 2. Under conditions (i) and (ii) of Theorem 2 and the following conditions:

for a fixed jo

- - - # .
"nij ay o"‘nijo ajo) for all 3j ig # (2.15)
.2. ( 2% (2.16)
x - a == o .
im=1 8330 3o !
r-t 3”5(2)
lim l 1 sitk3g) + u >0
ive “k=( X
jO
a"g(a)
for all w with w' = #0 and r = 1,2,00047g (2.17)
axj
0
vhere
L) 3t (a) ¢ _(a)
- %%, °
axt o x
% Yo b
Then
" g(a)
T are congistent directions for r = 1,2,...,:0 .
?
xjo

Similarly, for J; = ¢ and J, = (jol, analogous results readily cbtain.

For multiple regression, we only need to consider a special case of Theorem 2, i.e.
g = 1. Two cases are considered below as corollaries.
Corollary 3. Suppose (i), (ii) and (2.8), (2.9), (2.10) of Theorem 2 for g = 1 holq,

and

w'ta) Z ¥fla) Lj 3 Z Ifla)
lim + w' + ' Qa >0 (2.18)
== Ix - a ~ x, (x - a ~ j I I
= ng3y o ¥y, 3 gy Yy L J
for all w with
-8
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3f(a)

Z [+ is a consistent direction .
j  3x,

From Corollaries 1 and 2 we observe that (2.11) holds automatically for £y > 1 only
if J4 and Jy are both empty. Such is not the case for ry = 1. It is easy to see that
if J4 = $, (2.18) is automatically satisfied, and thus the following corollary.

Corollary 4. Suppose (i) and (ii) of Theorem 2 hold for ry = 1 and
(1ii) there exists a partition J, and J, of the set J = {1,2,...,q} such that for a

fixed jo €J,

Q. jeyg

where a, # 0,2, and

3

Then

af(a)

LA~

a, T is a consistent direction.
ied b] xj
%2
The following theorem shows that by further partitioning Jq into disjoint subsets
more consistent directions will be obtained.

Theorem 3. Suppose (i) and (ii) of Theorem 2 hold, and there exists a partition LJl}lk1

of the set J = {1,2,...,q} satisfying the following conditions:

RS T A o Nk ot el LD FLI il et N “II.I-II.I- P GRe [ W P S danecion IJ




(iii) Por a fixed j" e ch L= 1,2,0004h

11-;‘——_-“— = qkj,_l for all k € J!

#0,=.
ll

(iv) Por any j er. k € Jl+1' L= 12¢ee,h = 1

where % j

Xn,3 T 85 " O%nx T &) .

(v) There exists an hy € h such that for hy € £ €h, there exists an integer r

..t.

r,+1 r,
(xnik-ak) '°((xnij-‘j) ), k €J, jeJ‘,

- 2’2
121 (X g = a) "=, jea,, tony.
(vi) Por hy € L <h
nnlri‘s(kj) S (r,9,,1) + wv'Fla) > 0
Lim ’ + | 5 Y} + w'y a >
1re k=0 1 ) 1 | M ) ~j‘
vAr) d
for w with w'y (a) 2 0, r= 1,2,000,r
~ - sjl -~ z
. h
where 'r‘ - {(j,,...,jr) H (j,....,jr) er, for at least one jt e k-L!.‘L Jk},
: .
r, = lj.n(rt st > t).
Then the vectors
(r) z atge')
v (e) - a ese —————
14 '] L9 ese 3
3 dgeeeesd €3, 11 It ¥y ).
L
L= ho'ho * 1,...,}1, r= ‘,2,..o.tl

are consistent directions.

-10-
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Pro:tx Por any fixed Jl' ho €2L<h -1, jo e Jl' we regard J‘, jl' S;i Jy and
I as I, jo, Jy and Jy, respectively, in Theorem 2. From Theorem 2 we
-
c:n:I;da that g;:)(g) are consistent directions for £ = hj,hy + 1,.e./h -~ 1, and
r= 1,2,...,r‘. That g;:)(g) are consistent directions for r = 1,2,...,ry follows from
Theorem 2 with J3 = ¢, O

By combining the results in Theorems 1 and 3 for each limit point of the design
sequence and using Theorem 2 of Wu (1980), we obtain the following main theorem.

Define L{g,,...,et} to be the subspace spanned by vectors @,,ec+/8,-

Theorem 4. Suppose &., 3 = 1,...,k, are k distinct limit points of { and

3 % Ha

!l(!j)' J = Yok, £ = 1,...,tj, are the consistent directions obtained from Theorem 3,

then
k
s(f) = 121 A () @B (2)
where
’ A ) = L(g(gj), Lylay) = 1,....cj). 3= Veeeask,

k
1 2
B, (0 ={ue [321 nj(g)] : 1.2_1 (W lx )" = »

k
for any we[ ] a (g)]l and w'y # 0} .

1 3

There is no loss of generality in assuming finite k in Theorem 4 as was noted in Wu

and Wang (1982).

-11-




3. !wl‘.
In this section the general results developed heretofore will be applied to some

regression models. These examples show that our conditions are easier to verify than the
more typical condition b'(X’x ) 'b + 0.
(1) Multiple regression
L =9'flx) + ¢ (3.1)
where @' = (00'91""'°q-1)' o (lexgpeeeixgq)e E(X) = %
For the design sequence gi - (xiO'xii""'xiq-l)' Xi0= 1o
i = 1.2,...,51 +a= (‘0"1"""q-1)" ag = 1.

(a) If x4 = ay+ 172, 551, corollary 4 with a, = 1, § = 1,2,e00,q = 1,

b)
rg=1, 3y = {0}, 3= {1,...,q - 1} applies. From Theorem 1 and Corollary 4,
1 3£(a)
S(g) =-a, qi ™ = (0,1,¢0s,1)* are consistent directions.
J=1 3
(b) If x,, = a,+ 1 V3 Xgq = ay+ 173, 3 5 2. partition J = {0,1,2,00.,q - 1}
¥t(a) -
into J, = {0}, J,= {1}, I3 = {2,¢¢0,q = 1}. Therefore, a, 3x~ = (0,1,0,00.,0)" and
1 3g(a) !
Cy ui (0,0,%,1,¢44,1)" are consistent directions from Theorem 1, Corollaries 3 and
J=2 3

4, respectively.
-(3+1)"?
(c) 1t Xjy = a4+ i ¢+ 3% 1. It is easy to verify that
Iy = {2}, £ =0,1,2,.¢.,q - 1, h, = [q/2], where [x] is the largest integer less than
or equal to x, Jz and ho are defined in Theorem 3. Therefore

af(a)
> gj = (07000s0,1,0,00¢,0)', 3 = [q/2],+00,9, and 8 are consistent directions.

(1i) Multiple polynomial regression
Y= 9'Lx) + e (3.2)
where fj‘5)' J = 1,e0.,p, are monomials in x of degree less than or equal to d. If

21(5) # £ (x) for 1% 3j, then p = (d + q)l/(diql).

3
We will describe in more detail the general results to be obtained for the following

quadratic polynomial regression model in two variables:

2 2
= +
Yy 00 01x + 0.x, + 93x x, + 0‘x1 * Osxz + € (3.3)

1 272 172
and limit point a = (a1,02)'.

-12-




g (a) If xg4 = ay+ 1"V8, 1< 3<q, corollary 1 with @ =1, 3= 1eq and

- g ag(a) 3%¢(a)
rg = 2 applies. Thus £la), e and I ax . 2re congistent directions for
j=1 3 i.9=1 1%y

. model (3.2). In particular, for model (3.3), the three consistent directions are

Q(Q) = (1131:321313213¥ll§)' [

iL(a)  Afla)
+

Tax, Tk, < 0Nty +ayag 28,

1 2
2 azg(g_)
= (0,0,0,2,2,2)' .
1,5=1 3x13 3

(B) If xyy~ay+ V2 for 1¢3<3, and = ay + V3 for 3,< 3 <q,

then J, = {1,2,...,30}, Iy = {jo + 1,000.q}, £y =ry=1 in Theorem 3. Therefore

3o ag(a) Ela)
£f(a), I % and B are consistent directions. For model (3.3) and
=t % I

jo = 1, the last two consistent directions are

fla)
3x1 = (0:‘-0032'23110)' '

If(a)

axz

= (0,0,1,a,,0, 2,)' .

() If x4 = ay+ 1~V 5 2 1,2,...,q, it is easy to verify that

+ 1 L+ 1 L+ 1 .
Iy = {2}, 2 =12..0q, hy = [9—2—], r, = n:l.n{[-—i—], [-q_:_i]} and r, =1 for all
*
2> ho where Jl' ho“ T, and r, are defined in Theorem 3. Thus we know that
at(a)

£(a), “Ix 3= [(q+ 1)/2],¢s0,9, are consistent directions.

-13~
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